Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
J Med Chem ; 66(12): 7785-7803, 2023 06 22.
Article in English | MEDLINE | ID: covidwho-20243008

ABSTRACT

An under-explored target for SARS-CoV-2 is the S-adenosyl methionine (SAM)-dependent methyltransferase Nsp14, which methylates the N7-guanosine of viral RNA at the 5'-end, allowing the virus to evade host immune response. We sought new Nsp14 inhibitors with three large library docking strategies. First, up to 1.1 billion lead-like molecules were docked against the enzyme's SAM site, leading to three inhibitors with IC50 values from 6 to 50 µM. Second, docking a library of 16 million fragments revealed 9 new inhibitors with IC50 values from 12 to 341 µM. Third, docking a library of 25 million electrophiles to covalently modify Cys387 revealed 7 inhibitors with IC50 values from 3.5 to 39 µM. Overall, 32 inhibitors encompassing 11 chemotypes had IC50 values < 50 µM and 5 inhibitors in 4 chemotypes had IC50 values < 10 µM. These molecules are among the first non-SAM-like inhibitors of Nsp14, providing starting points for future optimization.


Subject(s)
COVID-19 , Methyltransferases , Humans , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , RNA, Viral/genetics , Exoribonucleases
2.
Front Med (Lausanne) ; 10: 1155727, 2023.
Article in English | MEDLINE | ID: covidwho-20242178

ABSTRACT

Vaccine-induced immune thrombotic thrombocytopenia (VITT), also known as thrombosis with thrombocytopenia syndrome, is a catastrophic and life-threatening reaction to coronavirus disease 2019 (COVID-19) vaccines, which occurs disproportionately in response to vaccination with non-replicating adenovirus vector (AV) vaccines. The mechanism of VITT is not well defined and it has not been resolved why cases of VITT are predominated by vaccination with AV vaccines. However, virtually all VITT patients have positive platelet-activating anti-platelet factor 4 (PF4) antibody titers. Subsequently, platelets are activated and depleted in an Fcγ-receptor IIa (FcγRIIa or CD32a)-dependent manner, but it is not clear why or how the anti-PF4 response is mounted. This review describes the pathogenesis of VITT and provides insight into possible mechanisms that prompt the formation of a PF4/polyanion complex, which drives VITT pathology, as an amalgam of current experimental data or hypotheses.

3.
NPJ Vaccines ; 8(1): 67, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2318256

ABSTRACT

There is still a need for safe, efficient, and low-cost coronavirus disease 2019 (COVID-19) vaccines that can stop transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we evaluated a vaccine candidate based on a live recombinant Newcastle disease virus (NDV) that expresses a stable version of the spike protein in infected cells as well as on the surface of the viral particle (AVX/COVID-12-HEXAPRO, also known as NDV-HXP-S). This vaccine candidate can be grown in embryonated eggs at a low cost, similar to influenza virus vaccines, and it can also be administered intranasally, potentially to induce mucosal immunity. We evaluated this vaccine candidate in prime-boost regimens via intramuscular, intranasal, or intranasal followed by intramuscular routes in an open-label non-randomized non-placebo-controlled phase I clinical trial in Mexico in 91 volunteers. The primary objective of the trial was to assess vaccine safety, and the secondary objective was to determine the immunogenicity of the different vaccine regimens. In the interim analysis reported here, the vaccine was found to be safe, and the higher doses tested were found to be immunogenic when given intramuscularly or intranasally followed by intramuscular administration, providing the basis for further clinical development of the vaccine candidate. The study is registered under ClinicalTrials.gov identifier NCT04871737.

5.
Nat Genet ; 55(3): 471-483, 2023 03.
Article in English | MEDLINE | ID: covidwho-2286470

ABSTRACT

Identification of host determinants of coronavirus infection informs mechanisms of viral pathogenesis and can provide new drug targets. Here we demonstrate that mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) chromatin remodeling complexes, specifically canonical BRG1/BRM-associated factor (cBAF) complexes, promote severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and represent host-directed therapeutic targets. The catalytic activity of SMARCA4 is required for mSWI/SNF-driven chromatin accessibility at the ACE2 locus, ACE2 expression and virus susceptibility. The transcription factors HNF1A/B interact with and recruit mSWI/SNF complexes to ACE2 enhancers, which contain high HNF1A motif density. Notably, small-molecule mSWI/SNF ATPase inhibitors or degraders abrogate angiotensin-converting enzyme 2 (ACE2) expression and confer resistance to SARS-CoV-2 variants and a remdesivir-resistant virus in three cell lines and three primary human cell types, including airway epithelial cells, by up to 5 logs. These data highlight the role of mSWI/SNF complex activities in conferring SARS-CoV-2 susceptibility and identify a potential class of broad-acting antivirals to combat emerging coronaviruses and drug-resistant variants.


Subject(s)
COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , Chromatin , COVID-19/genetics , DNA Helicases/genetics , Nuclear Proteins/genetics , SARS-CoV-2 , Transcription Factors/genetics
6.
Mol Ther ; 31(3): 774-787, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2253487

ABSTRACT

Acute kidney injury occurs frequently in COVID-19 patients infected by the coronavirus SARS-CoV-2, and infection of kidney cells by this virus has been reported. However, little is known about the direct impact of the SARS-CoV-2 infection upon the renal tubular cells. We report that SARS-CoV-2 activated signal transducer and activator of transcription 3 (STAT3) signaling and caused cellular injury in the human renal tubular cell line. Mechanistically, the viral protein ORF3A of SARS-CoV-2 augmented both NF-κB and STAT3 signaling and increased the expression of kidney injury molecule 1. SARS-CoV-2 infection or expression of ORF3A alone elevated the protein level of tripartite motif-containing protein 59 (TRIM59), an E3 ubiquitin ligase, which interacts with both ORF3A and STAT3. The excessive TRIM59 in turn dissociated the phosphatase TCPTP from binding to STAT3 and hence inhibited the dephosphorylation of STAT3, leading to persistent STAT3 activation. Consistently, ORF3A induced renal injury in zebrafish and mice. In addition, expression of TRIM59 was elevated in the kidney autopsies of COVID-19 patients with acute kidney injury. Thus, the aberrant activation of STAT3 signaling by TRIM59 plays a significant role in the renal tubular cell injury caused by SARS-CoV-2, which suggests a potential targeted therapy for the renal complications of COVID-19.


Subject(s)
Acute Kidney Injury , COVID-19 , Humans , Animals , Mice , SARS-CoV-2 , COVID-19/metabolism , STAT3 Transcription Factor/metabolism , Zebrafish , Acute Kidney Injury/etiology , Viral Proteins/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
7.
Sci Transl Med ; 15(683): eabo2847, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2239552

ABSTRACT

NDV-HXP-S is a recombinant Newcastle disease virus-based vaccine against SARS-CoV-2, which expresses an optimized (HexaPro) spike protein on its surface. The vaccine can be produced in embryonated chicken eggs using the same process as that used for the production of the vast majority of influenza virus vaccines. Here, we performed a secondary analysis of the antibody responses after vaccination with inactivated NDV-HXP-S in a phase 1 clinical study in Thailand. The SARS-CoV-2 neutralizing and spike protein binding activity of NDV-HXP-S postvaccination serum samples was compared to that of samples from mRNA BNT162b2 (Pfizer) vaccinees. Neutralizing activity of sera from NDV-HXP-S vaccinees was comparable to that of BNT162b2 vaccinees, whereas spike protein binding activity of the NDV-HXP-S vaccinee samples was lower than that of sera obtained from mRNA vaccinees. This led us to calculate ratios between binding and neutralizing antibody titers. Samples from NDV-HXP-S vaccinees had binding to neutralizing activity ratios that were lower than those of BNT162b2 sera, suggesting that NDV-HXP-S vaccination elicits a high proportion of neutralizing antibodies and low non-neutralizing antibody titers. Further analysis showed that, in contrast to mRNA vaccination, which induces strong antibody titers to the receptor binding domain (RBD), the N-terminal domain, and the S2 domain, NDV-HXP-S vaccination induced an RBD-focused antibody response with little reactivity to S2. This finding may explain the high proportion of neutralizing antibodies. In conclusion, vaccination with inactivated NDV-HXP-S induces a high proportion of neutralizing antibodies and absolute neutralizing antibody titers that are comparable to those elicited by mRNA vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Animals , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Neutralizing , RNA, Messenger/genetics , Antibodies, Viral
8.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2123786

ABSTRACT

Antiviral agents are needed for the treatment of SARS-CoV-2 infections and to control other coronavirus outbreaks that may occur in the future. Here we report the identification and characterization of RNA-binding compounds that inhibit SARS-CoV-2 replication. The compounds were detected by screening a small library of antiviral compounds previously shown to bind HIV-1 or HCV RNA elements with a live-virus cellular assay detecting inhibition of SARS-CoV-2 replication. These experiments allowed detection of eight compounds with promising anti-SARS-CoV-2 activity in the sub-micromolar to micromolar range and wide selectivity indexes. Examination of the mechanism of action of three selected hit compounds excluded action on the entry or egress stages of the virus replication cycle and confirmed recognition by two of the molecules of conserved RNA elements of the SARS-CoV-2 genome, including the highly conserved S2m hairpin located in the 3'-untranslated region of the virus. While further studies are needed to clarify the mechanism of action responsible for antiviral activity, these results facilitate the discovery of RNA-targeted antivirals and provide new chemical scaffolds for developing therapeutic agents against coronaviruses.

9.
Med (N Y) ; 3(10): 705-721.e11, 2022 10 14.
Article in English | MEDLINE | ID: covidwho-2076532

ABSTRACT

BACKGROUND: The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant and its BA.X lineages, has rendered ineffective a number of previously FDA emergency use authorized SARS-CoV-2 neutralizing antibody therapies. Furthermore, those approved antibodies with neutralizing activity against Omicron BA.1 are reportedly ineffective against the subset of Omicron subvariants that contain a R346K substitution, BA.1.1, and the more recently emergent BA.2, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. METHODS: Following a campaign of antibody discovery based on the vaccination of Harbor H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. FINDINGS: STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against each of the tested Omicron subvariants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. CONCLUSIONS: With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for intravenous or intranasal use in human clinical trials. FUNDING: Funded by CRIPT (no. 75N93021R00014), DARPA (HR0011-19-2-0020), and NCI Seronet (U54CA260560).


Subject(s)
Antibodies, Neutralizing , COVID-19 Drug Treatment , Administration, Intranasal , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Humans , Immunoglobulin G , Membrane Glycoproteins , Mice , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
10.
Current research in immunology ; 3:234-238, 2022.
Article in English | EuropePMC | ID: covidwho-2057826

ABSTRACT

The rapid evolution of SARS-CoV-2 since its pandemic outbreak has underscored the need for improved SARS-CoV-2 vaccines that efficiently reduce not only hospitalizations and deaths, but also infections and transmission. This might be achieved by a new generation of intranasally administered SARS-CoV-2 vaccines to stimulate protective mucosal immunity. Among all different approaches, preclinical and clinical information using Newcastle Disease Virus (NDV)-vectors expressing S of SARS-CoV2 as a COVID-19 vaccine show the potential of this vaccine platform as an affordable, highly immunogenic, safe strategy to intranasally vaccinate humans against SARS-CoV-2 and other infectious diseases. These vaccine vectors consist on the use of a harmless avian negative strand RNA virus to deliver intranasally a self-replicating RNA expressing the vaccine antigen in the cells of the respiratory mucosa. The vector also incorporates the antigen in the virus particle used for RNA delivery, thus combining the properties of nanoparticle-based and RNA-based vaccines. Other advantages of NDV-based vectors include the worldwide availability of manufacturing facilities for their production and their stability at non-freezing temperatures. While phase 3 clinical studies to evaluate efficacy are still pending, phase 1 and 2 clinical studies have demonstrated the safety and immunogenicity of NDV-S vaccines against SARS-CoV-2.

12.
Nat Commun ; 13(1): 3921, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1921607

ABSTRACT

Due to differences in human and murine angiotensin converting enzyme 2 (ACE-2) receptor, initially available SARS-CoV-2 isolates could not infect mice. Here we show that serial passaging of USA-WA1/2020 strain in mouse lungs results in "mouse-adapted" SARS-CoV-2 (MA-SARS-CoV-2) with mutations in S, M, and N genes, and a twelve-nucleotide insertion in the S gene. MA-SARS-CoV-2 infection causes mild disease, with more pronounced morbidity depending on genetic background and in aged and obese mice. Two mutations in the S gene associated with mouse adaptation (N501Y, H655Y) are present in SARS-CoV-2 variants of concern (VoCs). N501Y in the receptor binding domain of viruses of the B.1.1.7, B.1.351, P.1 and B.1.1.529 lineages (Alpha, Beta, Gamma and Omicron variants) is associated with high transmissibility and allows VoCs to infect wild type mice. We further show that S protein mutations of MA-SARS-CoV-2 do not affect neutralization efficiency by human convalescent and post vaccination sera.


Subject(s)
COVID-19 , Immune Evasion , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Aged , Animals , COVID-19/virology , Humans , Immune Sera , Mice , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
13.
ACS Infect Dis ; 8(7): 1265-1279, 2022 07 08.
Article in English | MEDLINE | ID: covidwho-1908084

ABSTRACT

There is a pressing need for host-directed therapeutics that elicit broad-spectrum antiviral activities to potentially address current and future viral pandemics. Apratoxin S4 (Apra S4) is a potent Sec61 inhibitor that prevents cotranslational translocation of secretory proteins into the endoplasmic reticulum (ER), leading to anticancer and antiangiogenic activity both in vitro and in vivo. Since Sec61 has been shown to be an essential host factor for viral proteostasis, we tested Apra S4 in cellular models of viral infection, including SARS-CoV-2, influenza A virus, and flaviviruses (Zika, West Nile, and Dengue virus). Apra S4 inhibited viral replication in a concentration-dependent manner and had high potency particularly against SARS-CoV-2 and influenza A virus, with subnanomolar activity in human cells. Characterization studies focused on SARS-CoV-2 revealed that Apra S4 impacted a post-entry stage of the viral life-cycle. Transmission electron microscopy revealed that Apra S4 blocked formation of stacked double-membrane vesicles, the sites of viral replication. Apra S4 reduced dsRNA formation and prevented viral protein production and trafficking of secretory proteins, especially the spike protein. Given the potent and broad-spectrum activity of Apra S4, further preclinical evaluation of Apra S4 and other Sec61 inhibitors as antivirals is warranted.


Subject(s)
COVID-19 Drug Treatment , Influenza A virus , Zika Virus Infection , Zika Virus , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Depsipeptides , Humans , Pandemics , SARS-CoV-2 , Zika Virus Infection/drug therapy
14.
Lancet Infect Dis ; 22(7): 1062-1075, 2022 07.
Article in English | MEDLINE | ID: covidwho-1900308

ABSTRACT

BACKGROUND: One strategy to develop a universal influenza virus vaccine is to redirect the immune system to the highly conserved haemagglutinin stalk domain by sequentially administering vaccines expressing chimeric (c) haemagglutinins with a conserved stalk domain and divergent head domain, to which humans are naive. We aimed to assess the reactogenicity, safety, and immunogenicity of adjuvanted and unadjuvanted investigational supra-seasonal universal influenza virus vaccines (SUIVs) in healthy young adults. METHODS: In this observer-masked, randomised, controlled, phase 1-2 trial, we recruited adults aged 18-39 years with no clinically significant conditions from six centres in Belgium and the USA. Participants were randomly assigned to ten equally sized groups via an online system with the MATerial Excellence programme. Vaccines contained heterosubtypic group 1 H8, H5, or H11 haemagglutinin heads, an H1 haemagglutinin stalk, and an N1 neuraminidase (cH8/1N1, cH5/1N1, and cH11/1N1; haemagglutinin dose 15 µg/0·5 mL), administered on days 1 and 57, with a month 14 booster. SUIVs were evaluated in the sequences: cH8/1N1-placebo-cH5/1N1, cH5/1N1-placebo-cH8/1N1, or cH8/1N1-cH5/1N1-cH11/1N1, adjuvanted with either AS03 or AS01, or not adjuvanted. The last group received inactivated quadrivalent influenza vaccine (IIV4)-placebo-IIV4. Primary outcomes were safety (analysed in the exposed population) and immunogenicity in terms of the anti-H1 stalk humoral response at 28 days after vaccination (analysed in the per-protocol population, defined as participants who received the study vaccines according to the protocol). This trial is registered with ClinicalTrials.gov, NCT03275389. FINDINGS: Between Sept 25, 2017, and March 26, 2020, 507 eligible participants were enrolled. 468 (92%) participants received at least one dose of study vaccine (exposed population), of whom 244 (52%) were included in the per-protocol population at final analysis at month 26. The safety profiles of all chimeric vaccines were clinically acceptable, with no safety concerns identified. Injection-site pain was the most common adverse event, occurring in 84-96% of participants receiving an adjuvanted SUIV or non-adjuvanted IIV4 and in 40-50% of participants receiving a non-adjuvanted SUIV. Spontaneously reported adverse events up to 28 days after vaccination occurred in 36-60% of participants, with no trends observed for any group. 17 participants had a serious adverse event, none of which were considered to be causally related to the vaccine. Anti-H1 stalk antibody titres were highest in AS03-adjuvanted groups, followed by AS01-adjuvanted and non-adjuvanted groups, and were higher after cH8/1N1 than after cH5/1N1 and after a two-dose primary schedule than after a one-dose schedule. Geometric mean concentrations by ELISA ranged from 21 938·1 ELISA units/mL (95% CI 18 037·8-26 681·8) in the IIV4-placebo-IIV4 group to 116 596·8 ELISA units/mL (93 869·6-144 826·6) in the AS03-adjuvanted cH8/1N1-cH5/1N1-cH11/1N1 group 28 days after the first dose and from 15 105·9 ELISA units/mL (12 007·7-19 003·6) in the non-adjuvanted cH5/1N1-placebo-cH8/1N1 group to 74 639·7 ELISA units/mL (59 986·3-92 872·6) in the AS03-adjuvanted cH8/1N1-cH5/1N1-cH11/1N1 group 28 days after the second dose. INTERPRETATION: The stalk domain seems to be a rational target for development of a universal influenza virus vaccine via administration of chimeric haemagglutinins with head domains to which humans are naive. FUNDING: GlaxoSmithKline Biologicals.


Subject(s)
Influenza Vaccines , Influenza, Human , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Antibodies, Viral , Hemagglutinins , Humans , Immunogenicity, Vaccine , Virion , Young Adult
15.
STAR Protoc ; 3(3): 101502, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-1886131

ABSTRACT

For efficient cell entry, SARS-CoV-2 spike protein needs to be cleaved by cellular proteases. Here, we present a comprehensive protocol to assess SARS-CoV-2 spike protein cleavage in viral supernatants from SARS-CoV-2-infected cells. We also include a previous step of SARS-CoV-2 isolation from nasopharyngeal swabs of patients with COVID-19. We optimized the procedures to enhance successful viral isolation and specific spike detection. This protocol facilitates the evaluation of the role of spike mutations in spike protein processing. For complete details on the use and execution of this protocol, please refer to Escalera et al. (2022).


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , COVID-19/diagnosis , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
16.
Microbiol Spectr ; 10(3): e0153822, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1879119

ABSTRACT

Equitable access to vaccines is necessary to limit the global impact of the coronavirus disease 2019 (COVID-19) pandemic and the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In previous studies, we described the development of a low-cost vaccine based on a Newcastle Disease virus (NDV) expressing the prefusion-stabilized spike protein from SARS-CoV-2, named NDV-HXP-S. Here, we present the development of next-generation NDV-HXP-S variant vaccines, which express the stabilized spike protein of the Beta, Gamma, and Delta variants of concerns (VOC). Combinations of variant vaccines in bivalent, trivalent, and tetravalent formulations were tested for immunogenicity and protection in mice. We show that the trivalent preparation, composed of the ancestral Wuhan, Beta, and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant. IMPORTANCE This manuscript describes an extended work on the Newcastle disease virus (NDV)-based vaccine focusing on multivalent formulations of NDV vectors expressing different prefusion-stabilized versions of the spike proteins of different SARS-CoV-2 variants of concern (VOC). We demonstrate here that this low-cost NDV platform can be easily adapted to construct vaccines against SARS-CoV-2 variants. Importantly, we show that the trivalent preparation, composed of the ancestral Wuhan, Beta, and Delta vaccines, substantially increases the levels of protection and of cross-neutralizing antibodies against mismatched, phylogenetically distant variants, including the currently circulating Omicron variant. We believe that these findings will help to guide efforts for pandemic preparedness against new variants in the future.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Humans , Mice , Newcastle disease virus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
17.
EClinicalMedicine ; 45: 101323, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1828408

ABSTRACT

Background: Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based recombinant Newcastle disease virus vaccine expressing the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It's being developed by public sector manufacturers in Thailand, Vietnam, and Brazil; herein are initial results from Thailand. Methods: This phase 1 stage of a randomised, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial was conducted at the Vaccine Trial Centre, Mahidol University (Bangkok). Healthy males and non-pregnant females, aged 18-59 years and negative for SARS-CoV-2 antibodies, were eligible. Participants were randomised to receive one of six treatments by intramuscular injection twice, 28 days apart: 1 µg, 1 µg+CpG1018 (a toll-like receptor 9 agonist), 3 µg, 3 µg+CpG1018, 10 µg, or placebo. Participants and personnel assessing outcomes were masked to treatment. The primary outcomes were solicited and spontaneously reported adverse events (AEs) during 7 and 28 days after each vaccination, respectively. Secondary outcomes were immunogenicity measures (anti-S IgG and pseudotyped virus neutralisation). An interim analysis assessed safety at day 57 in treatment-exposed individuals and immunogenicity through day 43 per protocol. ClinicalTrials.gov (NCT04764422). Findings: Between March 20 and April 23, 2021, 377 individuals were screened and 210 were enroled (35 per group); all received dose one; five missed dose two. The most common solicited AEs among vaccinees, all predominantly mild, were injection site pain (<63%), fatigue (<35%), headache (<32%), and myalgia (<32%). The proportion reporting a vaccine-related AE ranged from 5·7% to 17·1% among vaccine groups and was 2·9% in controls; there was no vaccine-related serious adverse event. The 10 µg formulation's immunogenicity ranked best, followed by 3 µg+CpG1018, 3 µg, 1 µg+CpG1018, and 1 µg formulations. On day 43, the geometric mean concentrations of 50% neutralising antibody ranged from 122·23 international units per mL (IU/mL; 1 µg, 95% confidence interval (CI) 86·40-172·91) to 474·35 IU/mL (10 µg, 95% CI 320·90-701·19), with 93·9% to 100% of vaccine groups attaining a ≥ 4-fold increase over baseline. Interpretation: NDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 µg and 3 µg+CpG1018 formulations advanced to phase 2. Funding: National Vaccine Institute (Thailand), National Research Council (Thailand), Bill & Melinda Gates Foundation, National Institutes of Health (USA).

20.
Nature ; 605(7911): 640-652, 2022 05.
Article in English | MEDLINE | ID: covidwho-1773987

ABSTRACT

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Biological Evolution , COVID-19 Vaccines , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemics/prevention & control , Pharmacogenomic Variants , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , United States/epidemiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL